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Application of a New Grain-Based 
Reconstruction Algorithm to 

Microtomography Images for 
Quantitative Characterization and 

Flow Modeling 
Karsten E. Thompson, Clinton S. Wlllson, and Christopher D. White, Louisiana State University; 
Stephanie Nyman, University of Waikato; Janok P. Bhattacharya, University of Houston; and 

Allen H. Reed, Naval Research Laboratory 

Summary 
X-ray computed microtomography (XMT) is used for high- 
resolution, nondestructive imaging and has been applied success- 
fully to geologic media. Despite the potential of XMT to aid in 
formation evaluation, currently it is used mostly as a research tool. 
One factor preventing more widespread application of XMT tech- 
nology is limited accessibility to microtomography beamlines. An- 
other factor is that computational tools for quantitative image 
analysis have not kept pace with the imaging technology itself. 

In this paper, we present a new grain-based algorithm used for 
network generation. The algorithm differs from other approaches 
because it uses the granular structure of the material as a template 
for creating the pore network rather than operating on the voxel set 
directly. With this algorithm, several advantages emerge: the al- 
gorithm is significantly faster computationally, less dependent on 
image resolution, and the network structure is tied to the funda- 
mental granular structure of the material. In this paper, we present 
extensive validation of the algorithm using computer-generated 
packings. These analyses provide guidance on issues such as ac- 
curacy and voxel resolution. The algorithm is applied to two sand- 
stone samples taken from different facies of the Frontier Formation 
in Wyoming, USA, and imaged using synchrotron XMT. Morpho- 
logic and flow-modeling results are presented. 

Introduction 
Subsurface transport processes such as oil and gas production arc 
multiscale processes. The pore scale governs many physical and 
chemical interactions and is the appropriate characteristic scale for 
the fundamental governing equations. The continuum scale is used 
for most core or laboratory scale measurements (e.g., Darcy ve- 
locity, phase saturation, and bulk capillary pressure). The field 
scale is the relevant scale for production and reservoir simulation. 

Multiscale modeling strategies aim to address these complexi- 
ties by integrating the various length scales. While pore-scale mod- 
eling is an essential component of multiscale modeling, quantita- 
tive methods are not as well-developed as their continuum-scale 
counterparts. Hence, pore-scale modeling represents a weak link in 
current multiscale techniques. 

The most fundamental approach for pore-scale modeling is 
direct solution of the equations of motion (along with other rel- 
evant conservation equations), which can be performed using a 
number of numerical techniques. The finite-element method is the 
most general approach in terms of the range of fluid and solid 
mechanics problems that can be addressed. Finite-difference and 
finite-volume methods arc more widely used in the computational 
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fluid dynamics community. The boundary clement method is very 
well suited for low-Reynolds number flow of Newtonian fluids (in- 
cluding multiphase flows). Finally, the lattice-Boltzmann method 
has been favored in the porous-media community because it easily 
adapts to the complex geometries found in natural materials. 

A less rigorous approach is network modeling, which gives an 
approximate solution to the governing equations. It requires dis- 
cretization of the pore space into pores and pore throats, and trans- 
port is modeled by imposing conservation equations at the pore 
scale. Network modeling involves two levels of approximation. 
The first is the representation of the complex, continuous void 
space as discrete pores and throats. The second is the approxima- 
tion to the fluid mechanics when solving the governing equations 
within the networks. The positive tradeoff for these significant 
simplifications is the ability to model transport over orders-of- 
magnitude larger characteristic scales than is possible with direct 
solutions of the equations of motion. Consequently, the two ap- 
proaches (rigorous modeling of the conservation equations vs. net- 
work modeling) have complementary roles in the overall context 
of multiscale modeling. Direct methods will remain essential for 
studying first-principles behavior and subporc-scale processes 
such as diffusion boundary layers during surface reactions, while 
network modeling will provide the best avenue for capturing larger 
characteristic scales (which is necessary for modeling the pore-to- 
continuum-scalc transition). 

This research addresses one of the significant hurdles for quan- 
titative network modeling: the use of high-resolution imaging of 
real materials for quantitative flow modeling. We focus in particu- 
lar on XMT to obtain 3D pore-scale images, and present a new 
technique for direct mapping of the XMT data onto networks for 
quantitative modeling. This direct mapping (in contrast to the gen- 
eration of statistically equivalent networks) ensures that subtle 
spatial correlations present in the original material are retained in 
the network structure. 

We refer to the network-generation technique presented here as 
a grain-based algorithm, which refers to the fact that the first step 
in the algorithm (prior to network generation) is the characteriza- 
tion of the underlying granular structure in the material. The ben- 
efits to this approach arc threefold. First, mapping of the granular 
structure is less sensitive to image resolution than, for instance, the 
direct mapping of a pore skeleton. Second, because the pores in a 
granular material are necessarily defined by their surrounding 
grains, a map of the grain structure is an ideal template for gen- 
erating the pore network; in principle, the map of the grain struc- 
ture should be essentially independent of image resolution, which 
means that the network structure will correlate more strongly to 
granular structure than to voxel size. Finally, because the number 
of grains is typically orders-of-magnitude smaller than the number 
of voxels, the grain-based algorithms are faster than equivalent 
voxel-based algorithms. 

In this work, we use a series of computer-generated sphere 
packings to validate and quantify errors in the grain-based net- 
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TABLE 1- -PARAMETERS USED TO DEFINE THE PORE NETWORK 

Variable Association Variable Name Variable Type Dimension 

Network Domain dimensions Vector Length 

Pore Location Vector Length 

Void volume Scalar Length3 

Maximum inscribed radius Scalar Length 

Throat lnterconnectivity:periodicity Scalar: vector 
Cross-sectional area Scalar Length2 

Maximum inscribed radius Scalar Length 

Surface area Scalar Length2 

Hydraulic conductivity Scalar Length3 

work-generation algorithm. The algorithm is then used to perform 
network modeling on two different facies from a well- 
characterized outcrop (Gani and Bhattacharya 2003), which illus- 
trates the potential of network modeling to be used in a multiscale 
framework. Few details of the grain-reconstruction algorithm (the 
precursor to the network-generation algorithm) are given in this 
paper because they can be found elsewhere (Thompson et al. 
2006). It was originally developed for the analysis of marine sands 
(Reed et al. 2005), but is being applied to other materials. This 
work extends the grain-based approach to relatively low-porosity, 
cemented sandstones, which pose different imaging and analy- 
sis challenges than unconsolldated sands; however, the main focus 
of the current paper is the generation of pore network models 
rather than grain characterization. Although grain structure pro- 
vides an initial template, ultimately the parameters in the pore 
network are computed directly from the voxel image. Hence (as 
explained next), even if the level of consolidation in a sandstone 
presents problems for the grain-reconstruction algorithm, the re- 
sulting pore network will still be a quantitative, one-to-one map of 
the pore structure. 

Background 
XMT. XMT provides nondestructive and noninvasive 3D images 
of the interior of objects by mapping the X-ray absorption through 
the sample. The amount of absorption depends on the chemical 
composition and structure of the material and the X-ray energy. 
XMT is based on the reconstruction of the cross-section of an 
object from its projection data, which is obtained by passing a 
series of rays through an object and measuring the attenuation of 
these rays using detectors placed on the downbeam side of the 
object. Projections are obtained by measuring the X-ray attenua- 
tion coefficients of the sample at different angles as the sample is 
rotated about the vertical axis. These attenuation values are rep- 
resented in images as discrete elements (pixels in 2D images and 
voxels in 3D images). Synchrotron radiation has several advan- 
tages over traditional X-ray sources, including high flux intensity 
(number of photons per second); a high degree of collimation 
(source divergence leads to image blur); and the ability to tune the 
photon energy to a single energy or frequency over a wide range 
using an appropriate monochromator, which can be used to make 
element-specific measurements. 

Over the last two decades, XMT has played an increasingly 
important role in the characterization of porous media flow and 
transport. Because of its nondestructive nature and increasingly 
high resolution, synchrotron-based XMT provides the high-quality 
datasets necessary to capture the 3D microstructure of the media 
(Liang et al. 2000a, b; Lindquist et al. 2000; Al-Raoush and Will- 
son 2005b) and the distribution of fluids within the pore space 
(Seright et al. 2002; Seright et al. 2003; Al-Raoush and Willson 
2005a). The ability to characterize and correlate the void space 
microstructure and fluid distributions provides data to improve and 
validate pore-scale models. 

Network Modeling. Network modeling has a long history in the 
oil and gas industry, beginning with the landmark paper of Fatt 

(1956). For an extended period, network modeling techniques em- 
ployed lattice-based networks, usually decorated with a distribu- 
tion of pore-body and/or pore-throat sizes. These lattice-based 
models are valuable for qualitative studies of transport in inter- 
connected, heterogeneous structures. However, they have not 
proved to be effective for quantitative modeling of real materials. 

Beginning in the early 1990s, new techniques were developed 
for quantitative network modeling. Bryant et al. (1993b) created 
physically representative network models from the highly charac- 
terized Finney packing (Finney 1970). Oren and coworkers created 
synthetic (computer-generated) sandstones and developed a tech- 
nique for extracting networks from these structures (Bakke and 
0ren 1997; 0ren et al. 1998). Their group has continued to de- 
velop this approach and the resulting networks have been used by 
a number of other investigators (Patzek 2001; Lopez et al. 2003; 
Valvatne and Blunt 2003). Lindquist et al. (1996) worked with 3D 
microtomography images and computed the medial axes of the 
pore structure; this approach was then extended to allow for direct 
generation of network structures (Sok et al. 2002). Thompson and 
Fogler (1997) applied the techniques of Bryant et al. (1993b) to 
computer-generated packed beds, and Al-Raoush et al. (2003) ex- 
tended this work to allow for network structures with arbitrary 
connectivity. Ioannidis and coworkers have used simulated anneal- 
ing and other algorithms to produce networks that conform to key 
statistics in real materials (Talukdar et al. 2002; Liang et al. 2000; 
Ioannidis et al. 1997). 

For the network modeling used in this work, we borrow the 
terminology physically representative network models (Bryant et al. 
1993b) to describe the general class of models, and we note two 
important characteristics of these structures. First, this type of 
network is a one-to-one mapping of a specific porous material of 
interest, which ensures that subtle spatial correlations in the pore 
structure are retained. Second, the networks are described using 
rigorous geometric parameters, which ensures that the pore mor- 
phology is not compromised despite the need to discretize the pore 
space. This latter point contrasts with techniques in which the pore 
structure is transformed into a network of interconnected capillar- 
ies from the outset, an approach that has been shown to cause 
ambiguity in the subsequent modeling of flow (Balhoff and 
Thompson 2004). 

There is no unique or correct discretization of most real pore 
structures (exceptions being simple structures such as cubic pack- 
ings of spheres). Likewise, there is more than one approach that 
can be taken to describe a network model. In this work, we use the 
set of parameters shown in Table 1 to describe the network struc- 
ture. In addition, the network remains linked to the original data 
(whether it is a voxel image or a computer-generated material). 
This methodology ensures that additional characterization could be 
performed if warranted by a particular modeling algorithm. (It 
guarantees, in essence, that none of the original morphologic data 
are lost.) 

The flow modeling itself is performed by imposing conserva- 
tion equation (s) at each pore in the network. This results in a set of 
linear or nonlinear algebraic equations, depending on the physics 
of the process being modeled. A description of flow-modeling 
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algorithms is beyond the scope of the current paper, but this in- 
formation can be found in many other papers on network modeling 
(Bryant et al. 1993b; Bakke and 0ren 1997; Patzek 2001; Lopez 
et al. 2003; Valvatne and Blunt 2003; Thompson and Fogler 1997; 
Balhoff and Thompson 2004; Bryant et al. 1993a). 

Network Generation From Voxel Data. Despite the advances 
described in the previous section, what remains surprisingly dif- 
ficult is the generation of physically representative network mod- 
els directly from microtomography images of real materials. The 
difficulty stems from the distinct differences in the form and scale 
of the data structures. The XMT data consist of hundreds of mil- 
lions (sometimes billions) of voxels on a Cartesian grid. In con- 
trast, the network representation of the same porous medium is 
likely to be described using a much smaller data set (order 103—10s 

pores), which are interconnected by a complex structure of flow- 
paths rather than aligned with any specific coordinate system. 
Transforming the former to the latter is a nontrivial procedure. 

Most previous work in this area employs the medial axis as a 
basis for characterizing the pore structure. For discretized images 
such as those from XMT, the medial axis is obtained by thinning 
the original pore structure until a one-voxel-thick skeleton re- 
mains, or by computing distance transforms in the void space (to 
the void/solid interface) and retaining the skeleton of local 
maxima. Different medial-axis structures are obtained depending 
on the method used, the order for thinning, the type of distance 
transform used, and/or the rules invoked to ensure that topology is 
retained (Lohman 1998). Lindquist et al. (1996) used the medial 
axes of 3D images to compute statistical parameters associated 
with the void space. They later extended their algorithm, using the 
medial axis as a basis for obtaining pore- and throat-size distribu- 
tions, which in turn were mapped onto a network structure 
(Lindquist et al. 2000). Specifically, the medial axis was trimmed 
down to the percolating fraction and nodes were then merged (by 
comparing the distance separating neighboring nodes to the dis- 
tance to local surfaces) to define pore locations. Pore throats were 
found by dilating the medial axis until the dilated cylinder con- 
tacted the bounding surfaces; pore-throat geometries were then 
obtained by triangulating between the medial axis and voxels 
along the perimeter of the constriction. Sok et el. simulated im- 
miscible displacement on networks generated by this algorithm 
and compared them to immiscible displacements on regular lat- 
tices having identical values for key statistical metrics (Sok et al. 
2002). Mirroring what Bryant et al. (1993a) observed for single 
phase flow, they note that multiphase flow behavior is not repro- 
duced correctly on statistically equivalent networks, emphasizing 
the need for algorithms that capture true pore morphology. Delerue 
et al. (1999) applied a medial-axis technique to a 3D image of a 
resin-impregnated soil, and then defined the pore-size distribution 
in the soil by measuring the maximum inscribed balls for all voxels 
contained on the skeleton. Mercury intrusion was simulated di- 
rectly on the voxel map (rather than a network representation). 
Delerue and Perrier (2002) describe in detail the various compu- 
tational elements used in the algorithm. Silin et al. (2003) em- 
ployed a similar approach, except that the maximal inscribed ball 
was found for each void-phase voxel in the packing. Though com- 
putationally more intensive, this approach allows the pores to be 
found independently of the skeleton. They tested their algorithm 
using computer-generated sphere packings and a CT image of 
Fontainbleau sandstone. However, pore network models were not 
created, and a quantitative assessment of the pore locations, sizes, 
and connectivity was not made. 

Materials and Methods 
Sandstone Samples. The samples used for this application were 
taken from the Wall Creek Member of the Cretaceous Frontier 
Formation, Wyoming, USA as part of an integrated geologic, geo- 
physical, and engineering study (Gani and Bhattacharya 2003). 
Ten wellbores were drilled through the Wall Creek Member and 
sample plugs were selected. 

Sample A is from a tidally-reworked sandstone facies within a 
delta front sandstone body. The permeability of this sample is 

severely reduced by calcite concretions. Concretions locally re- 
duce the permeability by several orders of magnitude in approxi- 
mately 15 volume % of the tidal sandstone facies (Lee et al. 2007). 
The sediments preserved in these rocks were derived from uplifts 
to the north and west. Lee et al. (2007) report that the average 
composition is approximately 51% quartz, 21% rock fragments, 
and 28% feldspars, with calcite as the dominant diagenetic cement. 
Feldspar and volcanic components have been highly altered by 
diagenesis. In uncemented rocks of the tidal sandstone facies, po- 
rosity averages approximately 0.22 and permeability is in the range 
of tens to a few hundred millidarcies, with a mean of 110-140 md 
(higher for fluvial-dominated deposits of the delta front). 

Sample B is from a channel sandstone facies within the same 
delta front sandstone body as sample A. The provenance of this 
sample is thus similar to Sample A, except for calcite cement 
replacing some of the pore space. This sample is interpreted to be 
from a relatively mud-free cross-stratified channel sandstone fa- 
cies. Depositional considerations would imply very high reservoir 
quality. The grain size is on average larger, and sorting is better 
than sample A. However, it is from a cemented region within the 
sandstone, and its reservoir quality is therefore relatively low. The 
greater abundance of calcite concretions in some channel sand- 
stones is inferred to be related to the abundance of mud chips (or 
shale clasts). Although mud chips would decrease initial perme- 
ability, their inhibiting effect on concretion formation actually re- 
sults in higher, post-diagenetic reservoir quality for channel sand- 
stones with mud chips (Lee et al. 2007). 

XMT of the Sandstone. Small samples of the sandstones were 
impregnated with an epoxy resin under vacuum and then cored to 
a length of 25 mm and a diameter of 5 mm. 5-mm-long sections of 
the cores were Imaged at 33.07 keV energy at the 13-BMD tomog- 
raphy beamline, operated by GeoSoilEnviroCARS (GSECARS) at 
the Advanced Photon Source. Image reconstruction was performed 
using algorithms developed by GSECARS to convert CT attenu- 
ation data to 3D volumetric data The resultant 3D gray-scale im- 
ages have a voxel resolution of 7.63 microns. Segmentation, the 
process of converting a gray-scale image to a 1 -bit or binary image 
by separating the images into two populations based on gray-scale 
values, was performed using the indicator kriging technique (Oh 
and Lindquist 1999) that is part of the 3DMA software package. In 
this work, the pore voxels are assigned a value of 0 and the grain 
voxels are assigned a value of 1. Fig. 1 contains images of the 
binary volume files. 

The combination of mineralogy (i.e., higher absorbing ele- 
ments) and X-ray energy created a relatively high signal-to-nolse 
ratio. This less-than-ideal image quality made it difficult to com- 
pletely resolve the solid and void phases and to remove the ring 
artifacts. Since the time that these experiments were performed, 
these issues have been addressed, which means that images from 
current experiments are generally free from these problems. 

Network Construction 
Overview. The input for the algorithm is a binary volume file 
describing the porous material of interest: voxel labels indicate 
whether the voxel is contained in the void phase or solid phase of 
the material. The algorithm operates by identifying grains, search- 
ing for pores based on the grain locations, and then creating the 
interconnected network using a novel restricted-burn algorithm. 
The significant differences between this algorithm and other net- 
work generation techniques include the following: 

l.The first step in the algorithm is the identification of the 
granular structure, a process that is less sensitive to image resolu- 
tion than techniques such as skeletonization. Consequently, net- 
works created for the same material at two different image reso- 
lutions have very similar structure and properties. 

2. The algorithm uses the granular structure as a template to 
help define pores. This means that the computationally expensive 
search for pores becomes linked to the number of grains in the 
image rather than the number of voxels, and the computational 
penalty for increasing image resolution is less severe than with 
other algorithms. 
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Fig. 1—Binary volume files for two sandstone samples: (a) tid- 
ally-reworked sandstone fades; (b) channel-sandstone facies. 

3. Because the grain locations provide the framework for de- 
termining pore structure, the algorithm operates without ever com- 
puting a skeleton of the pore space. By eliminating this step, a 
number of problematic issues such as nonuniqueness, dependence 
on image resolution, and the formation of internal loops are avoided. 

4. A key intermediate step between the original binary map and 
the final network structure assigns an integer label to every voxel 
(both void and solid phase) to mark the grain or the pore to which 
that voxel belongs. The reason for emphasizing this intermediate 
step is that it makes obtaining statistical information and construct- 
ing the network straightforward and unambiguous. 

Grain Reconstruction Algorithm. Step 1. Dual-Phase Burn. A 
simultaneous grain-phase and void-phase burn is performed (using 
the terminology of Lindquist et al. 1996). Voxels in the solid phase 
are labeled with positive integers denoting the burn level and vox- 
els in the void phase are labeled with the negative of the burn level. 
This convention is not necessary if the burn map remains coupled 
with the binary material array; however, the use of opposing signs 
allows the burn numbers to be written over the initial material 
array without losing the phase information. 

Step 2. Location of Extrema. A search is performed to find 
local maxima in the burn assignments. These local extrema are 
islands of one or more voxels that are surrounded by voxels with 
lower burn numbers. In the simplest form of the algorithm, the 
local maxima are taken to be the grain centers. However, refining 
the grain locations using optimization leads to better results 
(Thompson et al. 2006). Simultaneously, the local minima can be 
found (which according to the sign convention are in the void 
phase). In practice, this step is skipped to reduce computation time 
because die void-phase extrema are not used to define the pore 
structure. However, the minima are found and reported for com- 
pleteness in this paper. 

Step 3. Tessellation of the Grain Centers. A periodic Delaunay 
tessellation is performed using the locations of tiie grain centers 
(Thompson 2002). The purpose of the tessellation is to identify 
likely pore locations based on the granular structure. The role of 
the tessellation is somewhat subtle, and the following points are 
worth clarifying: 

1. In contrast to other techniques where the Delaunay tessella- 
tion is used to define pore structure (Bryant et al. 1993b; Thomp- 
son and Fogler 1997; Al-Raoush et al. 2003; Bryant et al. 1993a), 
it does not influence the structure of the pores in the current al- 
gorithm. In fact, the only restriction that it imposes is on the total 
number of pores: the algorithm will not find more pores than the 
number of tetrahedrons in the tessellation. This limitation should 
not be of practical consequence because the tendency of the De- 
launay tessellation is to identify too many pores [by splitting single 
pores into multiple tetrahedrons; see Al-Raoush et al. (2003)]. 
Furthermore, this restriction can be relaxed if necessary at the 
expense of increased computation time (see Item 3). 

2. Use of the Delaunay tessellation to aid in the identification of 
pore locations provides an advantage over erosion/dilation tech- 
niques because the number of pores that are located for a given 
porous medium is relatively insensitive to voxel resolution. This 
issue is demonstrated later in the validation section. 

3. Finally, the tessellation is a valuable but not essential part of 
the algorithm. An alternative approach would be to perform the 
optimizations described in the next step beginning with every 
void-phase voxel. However, even for the relatively small sand- 
stone datasets used here, this approach requires solving -5,000,000 
nonlinear optimization problems (in contrast to -25,000 optimiza- 
tions when the tessellation is used as a template). 

Step 4. Locating Pores. In the Introduction, we note that the 
division of void space into pores is somewhat arbitrary. In this 
work, we use the distance function d(x,y,z), whose value gives the 
minimum distance from the point [x,y,z\ in the void space to a 
grain surface (Luchnikov et al. 1999), and then define a pore as 
any local maxima in d. In practice, this definition corresponds to 
an accepted definition for pores: locations of maximum-diameter 
spheres that can be inscribed into the void space, and that are 
constrained from movement by the surrounding solid phase 
(Scheidegger 1974). In Step 4, these maximum-diameter inscribed 
spheres are located by performing repeated optimization proce- 
dures (to maximize d) using the tetrahedrons as seed locations to 
start the optimizations. 

The optimizations themselves are performed using a modified 
Powell's method (Press et al. 1992), which is a direction set 
method effective for situations where gradients in the objec- 
tive function cannot be calculated directly. In essence, the pro- 
cedure repeatedly performs ID line minimizations. Various 
schemes are available to choose the minimization directions, most 
based on estimating new conjugate directions from the history of 
the optimization. 

As each extremum is found, the voxel containing its x.y.z lo- 
cation is marked with the pore number. If a different seed has 
already converged to this same voxel (though the coordinate lo- 
cation would rarely be exactly the same), a new pore is not added 
to the list. Hence, Step 4 ends having generated a list of N pore 
locations and inscribed radii (i.e., maximum d values) along 
with N void-phase voxels labeled with the corresponding pore 
number. At this point, the pores are no longer tied to their seed 
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tetrahedrons and there is no further need for the Delaunay tessel- 
lation In the algorithm. 

Step 5. Pore Merging. A viable option is to use all pore loca- 
tions identified in Step 4, and proceed with constructing the net- 
work. However, in real cases, many pores overlap with one another 
by a significant amount, the overlaps being caused by one of two 
reasons: (a) the local pore geometry causes two independent ex- 
trema to be in proximity; (b) two different seeds have led to the 
same extremum, but numerical error or optimization tolerances 
have caused the computed extrema locations to differ by at least 
one voxel. 

In either of these cases, there is good reason to merge two 
largely overlapping pores into one. Various merge criteria can be 
devised. In the current algorithm, pores are merged only if one 
inscribed sphere encompasses the center of a neighboring in- 
scribed sphere. The location and radius of the larger inscribed 
sphere is used as a seed, and a local optimization is performed once 
again to verify the location of the merged pore. With the adjusted 
pore locations (owing to the reoptimization of merged pores), we 
have found it advisable to make another pass to check whether 
additional pores should be merged, and indeed to continue this 
merge—>re-optimization procedure iteratively until no more pores 
are merged. Step 5 ends with the same information as Step 4 (pore 
locations, radii, and corresponding voxel assignments), but with 
fewer and more spatially independent pores. 

Step 6. Grain and Pore Assembly. Step 6 is the key interme- 
diate step mentioned in the previous overview: the assignment of 
all voxels in the image to one of the grains or pores identified in 
Steps 2 or 5, respectively. This step is performed using a novel 
restricted burn algorithm, which is described in more detail in the 
context of grain reconstruction elsewhere (Thompson et al. 2006). 
In short, it assembles a cluster of voxels together that are tied to 
one of the grain or pore locations respectively, in accordance with 
the local geometry. 

A summary of the logic for this restricted burn procedure (Step 
6) is the following: 

1. Set the minimum bum level to the largest (absolute) value 
found in the pore space. 

2. Loop through all voxels in the domain. 
3. If the current voxel borders a voxel already assigned to a 

particular pore and its absolute burn level is greater than or equal 
to the current minimum burn level, assign it to the same pore as the 
assigned neighbor. 

4. If any new voxels were assigned during the last pass, go to 
Step 2. 

5. If no new voxels were assigned during the last pass, reduce 
the minimum burn level by 1; go to Step 2. 

Step 7. Pore Morphology and Network Construction. Once 
Step 6 is complete, determining morphologic parameters and con- 
structing the network is a straightforward process. The total vol- 
ume of each pore is obtained by summing the volume of all voxels 
assigned to that particular pore. The inscribed pore radii are al- 
ready known from the Step 4 and Step 5 computations. 

In our definition of network structure, pore throats have no 
volume but rather are defined by the faces where two pore- 
elements come into contact. Hence, the pore-throats, like the pores, 
have rigorous geometric parameters associated with them. The unit 
normal for the pore-throat interface is found by averaging the 
orientation of all voxel interfaces associated with the given throat. 
The total cross-sectional area of the throat is then found by sum- 
ming the areas of voxel faces at this interface projected onto this 
local unit normal. Use of the projected area prevents overesti- 
mating the area because of the staircase-like surface created by 
the voxels. The inscribed area of the throat is found by determin- 
ing the largest inscribed sphere whose center is located on the 
throat interface. 

Grain surface area is also assigned as a throat parameter be- 
cause it affects permeability as well as phenomena such as absorp- 
tion and chemical reactions on grain surfaces. The surface area is 
assigned by estimating the surface area for each surface voxel, and 
then assigning that element of surface to its closest throat. This 
approach ensures that the surface area is conservative (i.e., the sum 

of all pore throat surface areas equals the total surface area in the 
packing), thus providing a good theoretical foundation for its use 
in modeling. 

The last parameter that should be mentioned is the pore-throat 
hydraulic conductance of each throat, which is necessary for com- 
puting permeability and performing dynamic flow simulations. In 
general, the conductance is computed using some combination of 
the previously mentioned parameters, through generation of an 
equivalent capillary. In this work, we use essentially the same 
approach used in Thompson and Fogler (1997) (without the FEM 
computations). Further work includes evaluating the best way to 
compute throat conductivities for various types of materials. 

The network itself is defined by mapping out the connectivity 
of each pore, which is defined by the list of neighboring pores that 
share voxel-voxel contacts. There are no limitations on the struc- 
ture of the networks thus obtained (i.e., coordination numbers, 
etc.), and the resulting network files have exactly the same format 
as network descriptions from computer-generated media (Balhoff 
and Thompson 2004). Once the network is constructed, plots of 
pore-size distribution, throat-size distribution, and coordination 
number can be made directly from the data in the network file, 
without having to return to the large voxelized data sets. 

Validation. The grain-reconstruction algorithm has been tested 
extensively using computer-generated packings of spheres and cyl- 
inders as well as XMT data from unconsolidated particles and 
sands. Separately, the network-generation algorithm has been 
tested using a series of computer-generated packings of spheres. 
This approach is valuable for three reasons: First, the pore struc- 
ture in the material is known exactly; hence, the validity of the 
network generation process can be assessed in a quantitative man- 
ner. Second, the computer-generated structures can be discretized 
at arbitrary voxel resolution, which provides good benchmarks for 
the accuracy that can be expected with data from real materials. 
Third, the computer-generated data are free from noise and arti- 
facts, which allows validation to be focused solely on the network 
construction (rather than imaging and segmentation issues). 

Three sphere packings were used for validation: a cubic pack- 
ing, a rhombohedral packing, and a random packing. The two 
regular packings span the full range of attainable porosities for 
monodisperse spheres and the pore structure is known exactly. The 
random packing is more representative of real materials. No single 
network is correct for the random case. However, the modified 
Delaunay Tessellation (MDT) algorithm (Al-Raoush et al. 2003) is 
a fairly rigorous method for extracting the pore structure and can 
be used for comparison to the networks generated from the vox- 
elized images. 

Table 2 explains the notation used for reporting the statistical 
results. Selected quantitative data are presented in Table 3. (Data 
for the computer generated packings are in units of sphere diam- 
eters; data for the sandstone shown later are in microns.) Note that 
for the three sphere packings, the top row of each section contains 
parameters obtained from the MDT networks. These parameters 
quantify the error in the voxel-based networks. For the cubic and 
rhombohedral packings, the MDT values agree with theoretical 
values from a unit-cell analysis and are exact within the numerical 
tolerances set in the MDT algorithm. As mentioned previously, 
there are no "correct" morphologic values for the random packing. 
However, the MDT algorithm is an excellent benchmark because 
it is based on Delaunay analysis (Finney 1970; Mellor 1989) and 
allows for variable pore connectivities (which are not possible with 
the unmodified Delaunay tessellation). 

Identification of Pores. Column #£Vis the number of extrema 
in the void-phase burn. This parameter is the most logical choice 
for determining pore locations if the burn information were to be 
used directly. However, notice the very strong dependence of these 
values on image resolution (at least for the noncubic structures). 
For the rhombohedral packing, the number of void-phase extrema 
varies from four to 328 as image resolution is increased over an 
order-of-magnitude range (the true number of pores is 192). For 
the random packing, number of burn extrema varies between 63 
and 803 as resolution varies from 10 VPD to 125 VPD (the best 
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TABLE 2—EXPLANATION OF PARAMETERS 
USED IN TABLES 

Parameter      Description 

Aa Cross sectional area of a pore throat (ave) 

A, Surface area assigned to a pore throat (ave) 

DG Grain diameter (ave) 

DP Pore diameter (inscribed) (ave) 

DPT Pore-throat diameter (inscribed) (ave) 

UEG Number of extrema in the grain-phase burn 

UEV Number of extrema in the void-phase burn 

K Permeability (subscripts indicate flow direction) 

Ur Length of pore throat (ave) 

MBG Maximum burn number in the grain phase 

MBV Maximum (absolute) burn number in the void 
phase 

NG Number of grains 
Np Number of pores 

PLE Average error (%) in the computed pore locations 

#P, Number of pores initially found from the 
tetrahedron seeds 

UPM Number of one-to-one pore matches 
(reconstructed packing vs. original) 

#P« Final number of pores after the iterative 
merging/reoptimization process 

#Te( Number of tetrahedrons used as seeds for pore 
locations 

vVmin Minimum number of voxel faces required for a 
pore throat to be formed 

#VOK Number of voxels in the data set 

V, Volume of a pore (ave) 
VPD Voxels per particle diameter 

VR Voxel resolution 
Z Pore coordination number 

i Porosity 

Other 

ave Arithmetic average 

Sd Standard deviation 

estimates for number of pores in this packing are -400). Clearly, 
the void-phase burn provides a poor indicator of pore location, 
which is related to the problems with skeletonization that were 
mentioned previously. 

In the current algorithm, the grain structure is used as a tem- 
plate for determining pore locations. The initial seeds for pore 
locations are based on a Delaunay tessellation of the grain loca- 
tions. Table 3 lists the number of Delaunay tetrahedrons (see col- 
umn #7"er). The number of largest-inscribed-spheres obtained from 
these seeds is listed in column #P7. Note that the numbers in both 
of these columns are relatively insensitive to image resolution 
since they are tied to the grain structure rather than the voxel structure. 

The cubic packing has significantly fewer inscribed spheres 
(i.e., pores) than tetrahedron seeds. The reason for this difference 
is that assembling a cubic pore requires at least five tetrahedrons. 
If the optimization routine were exact, all five seeds would con- 
verge on the same central pore location. In reality, more than one 
seed will usually converge on the same central voxel, and is listed 
only once. The fact that #P7 decreases with increasing resolution is 
somewhat counterintuitive (because higher resolutions provide 
many more voxels in which the optimizations can land). However, 
the reason for this effect is the increased accuracy of the optimi- 
zation procedure as resolution increases (which is a consequence 
of more precise distance-to-surface calculations). 

The more important value is the final number of pores after 
merging (#P/J- For the cubic packing, this value is exact for all 

resolutions. For the rhombohedral packing, it is exact for resolu- 
tions of 16.7 VPD and above. For the random packing, an exact 
number of pores can never be defined unequivocally. However, the 
values obtained from the current algorithm and the MDT algorithm 
agree reasonably well. Results from the random packing also il- 
lustrate the efficiency of the grain-based approach. Examining 
the number of tetrahedrons (each of which generates a seed point 
to search for a pore) shows that -620 nonlinear optimization 
procedures were performed to find the initial pore locations, 
independent of image resolution. In contrast, -32 million of these 
same computations would have been required for the 100 VPD 
image if each void-phase voxel were tested to find its maximum 
inscribed sphere. 

Accuracy of Pore Locations and Sizes. The pore location is 
defined as the center of the largest sphere that can be inscribed into 
a given void space. For the cubic packing, the results are essen- 
tially exact in cases where an integer VPD value is used. For 
noninteger VPD values, the voxels cannot be divided evenly be- 
tween pores in the packing. Consequently, there remain slight 
distributions in pore parameters, even at high VPD values. How- 
ever, error remains fairly low in key parameters such as pore 
volume (see V^ and pore location (Table 3, column PLE). The 
rhombohedral packing is a much more rigorous test because the 
pores are not symmetric with respect to the Cartesian voxel grid 
and also because they are small. The error in pore locations is 
significant at low resolutions (where pore dimensions can be as 
small as a single voxel), but it appears to decrease monotonically 
with increasing voxel resolution. 

The accuracy for the random packing network is somewhat 
harder to assess, mostly because the number of pores found does 
not agree exactly for the MDT vs. voxel-based networks. Column 
#PM in Table 3 provides statistics for the fraction of pores widi a 
one-to-one match with the MDT network (defined when the center 
of one and only one pore from the voxel network lies inside an 
inscribed pore of the MDT network). Also shown is the average 
error in pore location for these one-to-one matches. 

Pore parameters are computed with increasing accuracy as the 
voxel resolution increases. This trend is easy to confirm by exam- 
ining the results for the cubic packing. The same trend occurs for 
the other two packings, but is harder to assess from simple statis- 
tics: a rhombohedral packing contains two distinct types of pores 
(which is why the standard deviation remains non-zero for both the 
MDT results and the high-VPD results) and die random packing 
has a distribution of pores. 

Coordination Number. Determining the pore coordination 
number (the number of throats emanating from a pore and con- 
necting to other pores) remains the biggest problem for this algo- 
rithm (as well as other network generation algorithms). For the 
cubic packing, the coordination number is exact for integer VPD 
values, again because of the fact that pore boundaries are coinci- 
dent with voxel boundaries. For resolutions that produce noninte- 
ger VPD values, the average coordination numbers are slightly 
higher and the maximum coordination numbers are significantly 
higher than they should be. The problem is illustrated in Fig. 2, 
which shows two pores assembled from a cubic packing with a 
noninteger resolution of 21.3 VPD. Although they are constructed 
correctly (within the limitations of the voxel resolution), the fact 
that the pore boundaries are not coincident with voxel boundaries 
creates a contact between two voxel faces at a position that should 
be a corner-corner contact in reality (and therefore should not 
register as a throat connection). The numbers from the noninteger 
VPD cases indicate that this problem occurs less often than once 
per pore on average (though certain pores are assigned many extra 
neighbors, as evidenced by the high values for the maximum co- 
ordination numbers). For the rhombohedral packing, the problem 
is similar, though no resolution generates the exact coordination 
pattern because the rhombohedral pore boundaries never lie along 
voxel boundaries. 

For random pore structures, the problem is exacerbated. The 
pore geometries are more irregular (anomalies are not limited to 
corner-comer contacts as with the cubic packing) and, like the 
rhombohedral packing, the Cartesian voxel system does not allow 
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Fig. 2—Non-physical pore-throat connection in a cubic packing 
of spheres. 

for perfect breaks in the pore geometry. Estimates of average pore 
coordination number fall into the mid-sixes range. These values 
are probably too high, again because of identification of voxel- 
voxel connections that should not register as pore-pore connec- 
tions (a fact also evidenced by the large values of maximum co- 
ordination number). 

The obvious solution to this problem is to set a minimum limit 
for the number of voxel-voxel contacts that constitutes a pore 
throat. For the cubic packing, requiring pore throats to be com- 
posed of three or more voxel faces led to perfect coordination 
numbers at all non-integer resolutions tested. For the 40 VPD 
random packing, Fig. 3 shows a histogram of the number of voxel 
faces found at a throat connection. The histogram has a broad 
minimum before the population begins to increase at around 70 
voxel-faces per throat. Interestingly, the theoretical minimum for 
throat size at this resolution is 64 voxel-faces per throat, which 
lends credence to die histogram. These two factors suggest that 
connections made at less-than -64 voxel-faces/throat are anoma- 
lies and should be discarded. Table 4 shows the results for various 
minimum-voxel limits applied to the 40 VPD random sphere pack- 
ing. For a conservative minimum of 50 voxel-faces/throat, the 
revised throat parameters are in much better agreement with the 
MDT values, with the average pore coordination number reduced 
to 4.67. A more aggressive limit of 63 voxel-faces per throat 

20 40 60 80 
Number of voxel faces per throat 

100 

Fig. 3—Histogram of the number of voxel-voxel contacts in pore 
throats in a random packing of spheres. 

caused the other parameters to deteriorate, indicating that real 
throats are being discarded with this higher limit. 

Unfortunately, it Is difficult to generalize an effective rule for 
how to limit interconnectivity. Creating a histogram (e.g., Fig. 3) 
on a case-by-case basis is a sensible and fairly easy approach 
with an automated algorithm. However, tomographic data from 
real materials that we have tested do not show the bimodal distri- 
bution found in Fig. 3 and therefore do not provide a strong ra- 
tionale for a cutoff value. We suggest the following approach. For 
the purposes of network generation, small values or no cutoff 
should be used because extra throats will have negligible effect on 
most transport processes (because of their very small size), and 
because one risks eliminating what the tomography has identified 
as "real" connections. For the purposes of statistical analysis, the 
extra throats do cause a problem because they affect the calcula- 
tion of coordination number and average throat parameters. In 
these cases, it is worth the extra effort to assess the distribution of 
voxel contacts, and provide a cutoff if a case can be made to do so. 
Finally, the use of geometric averages should improve the statis- 
tical characterization even in cases where small throats are mis- 
takenly identified. 

Results 

Networks were created using the sample A and sample B sand- 
stone images. For illustration purposes, ball-and-stick depictions 
of the network structures are shown in Fig. 4. Comparing these 
networks to the Fig. 1 tomography images emphasizes the one-to- 

TABLE 4—CHANGES IN PORE-THROAT PARAMETERS BY LIMITING CONNECTIVITY 

MDT 

Pore-Throat Parameters 

z D °T Acs As 

min 

2 

max 

12 

ave 

4.60 

ave sd ave sd 

0.0963 

ave sd 

0.2627 0.0846 0.3548 0.3369 0.1233 

0 26 6.60 0.2083 0.1015 0.2484 0.1479 0.2392 0.1448 

1 26 6.60 0.2083 0.1015 0.2484 0.1479 0.2392 0.1448 

2 23 6.08 0.2215 0.0950 0.2673 0.1386 0.2607 0.1475 

3 21 5.87 0.2269 0.0921 0.2757 0.1338 0.2697 0.1477 

4 20 5.71 0.2310 0.0898 0.2820 0.1299 0.2770 0.1472 

5 20 5.71 0.2310 0.0898 0.2820 0.1299 0.2770 0.1472 

10 19 5.24 0.2422 0.0842 0.3019 0.1164 0.3018 0.1414 

50 18 4.67 0.2523 0.0814 0.3251 0.1008 0.3386 0.1255 

63 0 17 457 0.3113 0.0960 02981 0.1536 0.3108 0.1792 
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Fig. 4—Ball and-stick schematic illustration of network models 
corresponding to the two different sandstone samples. 

one mapping that is achieved using a physically representative 
network modeling technique. 

For the sample A data set, two different network reconstruc- 
tions have been performed. The first uses the grain-reconstruc- 
tion algorithm. For comparison, a second run was performed in 
which the search for pores was performed directly on the void- 
phase voxels, without use of the grain reconstruction and the De- 
launay tessellation. 

All runs were performed on IBM Power5 8-way 1.90GHz p575 
machines, which are operated by LSU's high-performance com- 
puting center. The grain-based algorithm required -1 hr of run 
time, while the voxel based network required -24 hrs to run. 

Morphologic Parameters. Fig. 5 contains an image of the grain 
reconstruction process for sample A, which is included for general 
interest. Shading is assigned randomly to grain numbers to give a 
visual indication of the discretization into individual grains. (The 
missing piece at the bottom left corner is an artifact caused by the 
graphics software.) 

In previous tests of the algorithm on tomography images of 
unconsolidated sands, two problems with the grain-reconstruction 

Fig. 5—Grain reconstruction of the sandstone sample A. 

process were identified. The first problem is single grains being 
"broken" into more than one piece. This problem is associated with 
noise in the data and/or the misidentification of grain centers 
(which in turn stems from either unusual grain shapes or limita- 
tions in the voxel resolution and resulting burn). The second prob- 
lem is the opposite situation: the identification of a single large 
grain that should probably be broken into more than one piece 
(although this decision is subjective in consolidated materials). 
Both problems appear to be more pronounced for the current sand- 
stone data compared to unconsolidated sands. Solutions to these 
problems are being implemented, but are not yet validated, and 
thus were not used in the current work. 

Fortunately, the main problem with the current image appears 
to be the division of single grains into more than one piece, which 
will not affect the network generation process in a detrimental 
way; an increased number of grains will simply cause the algo- 
rithm to search for more pores. However, the final pore locations 
are determined by the optimization procedure and reflect local 
geometry regardless of whether the local grains were reconstructed 
in a reasonable way. Hence, the grain-based algorithm generates a 
physically representative network even if problems occur in the 
grain reconstruction process. 

Table 5 contains selected parameters for the two different net- 
work generation techniques used on Sample A. Fig. 6 shows his- 
tograms of the inscribed pore-size, inscribed pore-throat-size, and 
pore coordination number for the grain-based network. Fig. 7 is a 
graphical representation of the two different network structures in 
a small interior section of the sandstone. 

The most striking difference between the two networks is the 
number of pores, with the grain-based network having many fewer 
pores and thus longer pore throats spanning the gaps between the 
pores. This is a consequence of the logic in the grain-based algo- 
rithm, which uses the Delaunay tessellation of the grains as seed 
locations for potential pores. In contrast, the voxel-based algorithm 
searches for pores from each voxel location, which results in the 
identification of many more local extrema (i.e., locations of maxi- 
mum inscribed spheres). Although the difference in pore numbers 
is large, it is still not possible to declare one network more correct 
than the other because discretization of the pore space is an arbi- 
trary process (within reason of course). The key is that in both 
cases the network is a one-to-one mapping of the pore structure, 
and in both cases the pores are defined using the same rigorous 
definition: a local maximum in the distance function d{x,y,z). The 
most effective illustration of these points is to examine the two 
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TABLE 5—QUANTITATIVE RESULTS FROM NETWORK MODELING 
OF THE SANDSTONE IMAGES 

Sandstone A Sandstone B 

Grain-Based Network Voxel-Based Network Grain-Based Network 

WG 2,334 2,185 

Da (^m) 101 100 

NP 10,768 65,574 9,063 

Dp (fjm) 34 18 39 

Dprium) 31 26 38 

LPT (//m) 77 35 92.8 

Z 3.21 3.16 3.15 

£ 0.186 0.187 0.160 

K„ (mD) 410 430 1630 

K„ (mD) 530 570 850 

KB (mD) 320 360 631 

networks side by side, as in Fig. 7, and note that, despite differ- 
ences in the details, the trends in network structure are the same 
(e.g., the appearance of large pores at the same locations; gaps in 
the network structure at the same locations, and so on). 

The other notable point from the data presented here is the 
relatively small difference between the pore-throat diameters and 
the pore diameters, which is a consequence of the more tube-like 
pore structure that can occur in consolidated sands. In fact, in the 
voxel-based network, the average pore size is smaller than the 
average throat size. Although this is counter to the traditional pore 
and pore-throat model, it is a consequence of the high density of 
pores in the second network. The void space comprises strings of 
largely overlapping pores rather than distinct pores connected by 
long throats; the pore-throat diameter is simply the size of the 
channel at the point where two inscribed spheres overlap, and thus 
is not necessarily smaller than the adjacent pores. 

Flow Modeling. The networks were used to model single-phase 
low-Reynolds-number flow of a Newtonian fluid. The flow mod- 
eling was performed after cropping 100 /xm from all sides of the 
networks so as to avoid edge effects that are caused by the bound- 
ary of the volume data. 

A pressure gradient was imposed in one of the coordinate di- 
rections and the resulting volumetric flowrate was computed. Per- 
meability was then calculated using Darcy's law (see Table 5). 
This process was repeated for all three coordinate directions de- 
fined by the imaging volume. Note that Kyl does not imply orien- 
tation with respect to a bedding plane; because the sample was 
taken from a small cutting, no attempt was made to align the 
tomography image with the geologic strata. 

The ability to obtain dimensional permeability values is a con- 
sequence of using physically representative networks. That is, the 
network is a map of a specific-sized region of the sandstone, which 
allows for the computation of dimensional volumetric flowrates 
and cross-sectional areas for flow. Additionally, because of the 
one-to-one mapping, the model has no adjustable or scaling pa- 
rameters. [The pore-throat hydraulic conductivities are determined 
using the formulas originally developed for sphere packings 
(Thompson and Fogler 1997) and therefore are not treated as ad- 
justable parameters.] 

The similarity in permeabilities for the two different networks 
created from sandstone A may be surprising, considering the dif- 
ferent network structures. However, this fact is again a conse- 
quence of using physically representative networks: in the network 
with fewer pores and pore throats, the throats are longer and there- 
fore exhibit larger hydraulic resistance. Put simply, everything 
comes out in the wash. 

Fig. 8 is a grayscale mapping of single-phase flow through the 
same region of sandstone A shown in Fig. 7b (the voxel-based 
network). The pressure gradient is from left to light for this simu- 

lation, and brighter shades indicate higher flowrates. This graphic 
shows clearly the heterogeneity in the flow pattern that results 
from the pore morphology, and demonstrates the conventional 
wisdom that relatively few pores carry a large fraction of the fluid. 
This graphic is also an effective illustration of the rationale for 
using network modeling, as opposed to simpler effective medium 
or bundle-of-tubes models. Although these simpler models may 
predict correct permeabilities given the proper pore statistics, they 
do not capture the flow heterogeneity that contributes strongly to 
processes such as solute dispersion. 

Discussion 
A grain-reconstruction algorithm (originally developed for uncon- 
solidated sands) has been applied to consolidated sandstones. With 
additional development and testing, we believe that this algorithm 
can be used as a tool for quantitative analysis of the granular 
structure in sandstones. This paper uses a grain-reconstruction pro- 
cess as a template for generating a physically representative net- 
work model of the pore structure. The main advantages of this new 
approach are that the network is tied to a correct characteristic 
scale for the materials (i.e., the grain scale), the algorithm is more 
than an order of magnitude faster (compared to an equivalent 
voxel-based algorithm), and the resulting networks are less depen- 
dent on voxel resolution. 

Future research should examine how different network struc- 
tures (i.e., two different networks that are intended to represent the 
same material) affect the modeling of transport phenomena. To 
begin studying this issue, we ran the current algorithm in two 
ways: as a voxel-based algorithm and as a grain-based algorithm. 
These two approaches resulted in dramatically different network 
structures: the most obvious difference is in the number of pores, 
but this in turn affects most other parameters, including coordina- 
tion number, throat length, and throat conductivity. Interestingly, 
despite the fact that the voxel-based network contained six times 
the number of pores, the average permeability difference (for the 
three directions) is only 7.5%. This result is encouraging because 
it means that the physically representative network generation pro- 
cess (which is free of adjustable parameters) is working as in- 
tended with respect to single-phase permeability. Nonetheless, we 
expect that multiphase simulations will be more sensitive to factors 
such as pore coordination number because current multiphase 
models rely more on rule-based algorithms compared to the single- 
phase models. This is a topic of ongoing research. 

We conclude by commenting on the issue of image resolution. 
From our experience with grain-based modeling, we suggest a 
minimum of 10 VPD in order to extract reasonably good statistics 
for the solid-phase structure in unconsolidated materials (Thomp- 
son et al. 2006). However, this value (10 VPD) may need to be 
significantly higher for pore networks. Consider that when three 
spheres are placed in contact to form a pore throat (i.e., the ge- 
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Fig. 6—Morphology of the pore space in sandstone A: (a) pore- 
size distribution (inscribed); (b) pore-coordination-number dis- 
tribution; (c) pore-throat-size distribution (inscribed). 

ometry In a rhombohedral packing), the inscribed diameter of the 
passage is equal to 0.155Z?sphere. Hence, a 10 VPD image will 
provide only 1-2 voxel resolution at a pore throat, which is the 
crucial area for flow modeling. This issue is exacerbated when a 
particle size distribution exists, or with consolidation. Table 3 from 
this paper provides a good starting point for assessing the errors in 
pore parameters that stem from voxel resolution issues. 
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